

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

An Experimental Technique for Studying the Infrared Spectrum of Chemisorbed Compounds

George G. Guilbault^a; E. Scheide^a; J. Das^a

^a Chemistry Department, Louisiana State University in New Orleans, New Orleans, Louisiana

To cite this Article Guilbault, George G. , Scheide, E. and Das, J.(1968) 'An Experimental Technique for Studying the Infrared Spectrum of Chemisorbed Compounds', *Spectroscopy Letters*, 1: 4, 167 – 175

To link to this Article: DOI: 10.1080/00387016808049958

URL: <http://dx.doi.org/10.1080/00387016808049958>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

AN EXPERIMENTAL TECHNIQUE FOR STUDYING THE
INFRARED SPECTRUM OF CHEMISORBED COMPOUNDS

KEY WORDS: chemisorption, infrared cell, organophosphorus
compounds, gas-phase

George G. Guilbault, E. Scheide and J. Das

Chemistry Department
Louisiana State University in New Orleans
New Orleans, Louisiana 70122

ABSTRACT

Two specially designed infrared cells are described for use in studying chemisorption gas-solid reactions. The gas phase spectrum of diisopropyl methyl phosphonate and dimethyl methyl phosphonate both before and after reaction with a transition metal solid, FeCl_3 , are shown, using these new cells. Assignments are made for all bands in the spectrum of these compounds.

INTRODUCTION

In a recent paper¹ one of us (GGG) described an experimental technique for studying chemisorption reactions, in which a thin layer of finely ground crystals of the inorganic salt was placed in the bottom of a reaction finger attached to a vacuum line. A gaseous ligand was then allowed to react with the solid, the product was removed and mixed with KBr, and a spectrum was then taken of the resulting pellet using a Beckman IR 7. A more detailed study revealed this to be a poor technique in many cases: (1) in chemisorption, reaction occurs only at the surface,

hence the proportion of reacted molecules to unreacted ones is very low. Thus concentration problems are introduced when the KBr pellets are made, and poor spectra are obtained in many cases; (2) elaborate precautions had to be taken to prevent atmospheric water from contaminating the sample during the process of preparing the KBr pellet. In addition, some of the complexes were unstable to atmospheric pressure and water.

An ideal method of carrying on and studying chemisorption reactions, then, would be to develop a simple, easily manipulable gas cell, which could be evacuated to very low pressures, and which would allow the continuous infrared monitoring of any reactions.

Using ideas from previous gas cells described by Smiley² and Eischens^{3,4}, cells were constructed that would meet the desired characteristics listed above. In these cells (Figures 1 and 2) a surface reaction can be induced and studied at

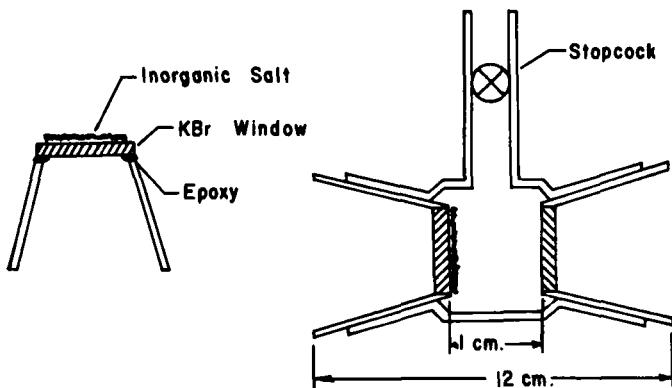


FIG. 1
Infrared Cell Type A

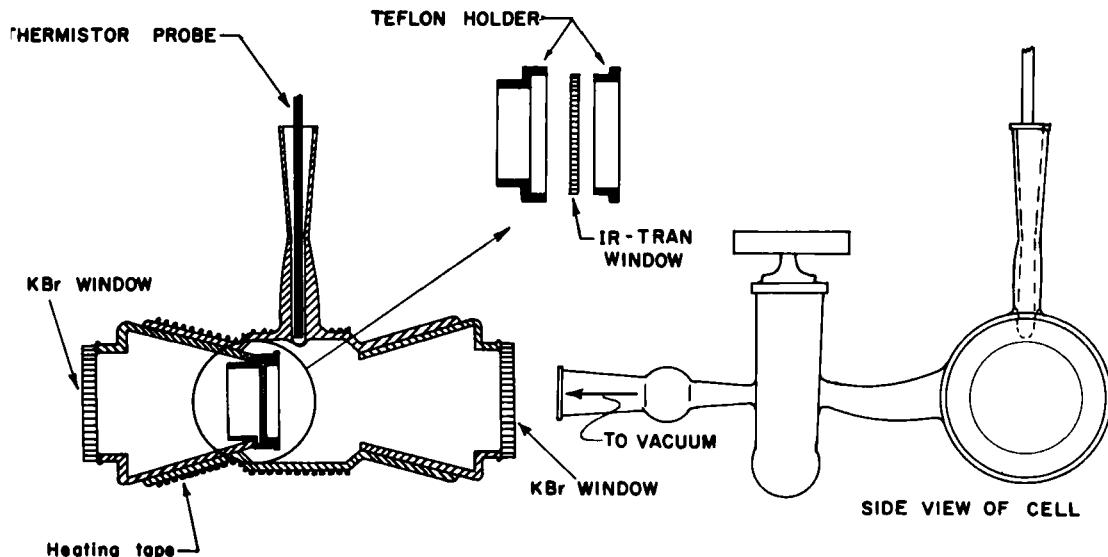


FIG. 2
Infrared Cell Type B

various pressures and temperatures. The cells can be evacuated to 10^{-7} mm, and have advantages of simplicity and convenience.

EXPERIMENTAL

Vacuum System

The high vacuum system used (Figure 3) consisted of a high capacity CENCO fore pump and a Consolidated Vacuum water cooled ultra high vacuum diffusion oil pump having a rated capacity of 10^{-8} mm of Hg. Provision for bakeout was provided, and pressures were recorded on four calibrated guages:

Wallace and Tiernan (W and T) 0-20 and 0-760 mm differential guages, a Phillips cold ionization guage (0.1 mm to 10^{-6} mm) and a Consolidated hot ionization guage (10^{-4} to 10^{-9} mm).

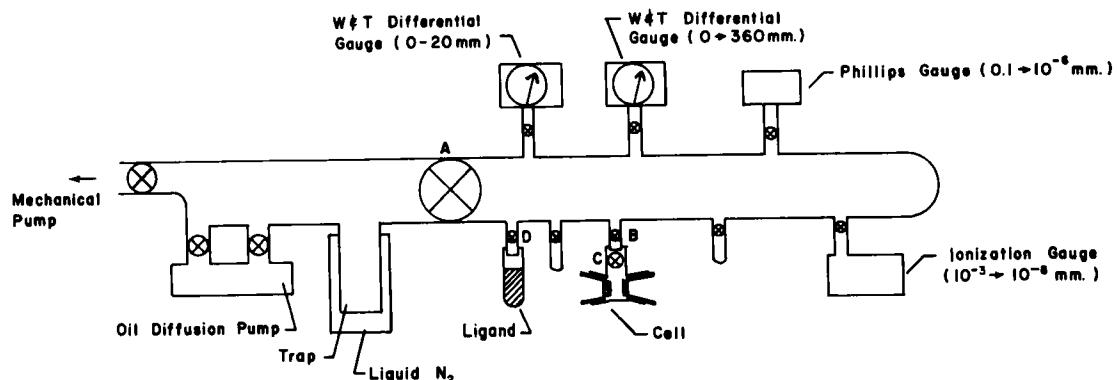


FIG. 3

High Vacuum System for Chemisorption Studies

IR Cell Type A

Cell A (Figure 1) is an ultimate in simplicity, consisting of a glass tube (40 mm O.D.) with a ground glass female joint (34/28 Corning 6640) fused to each end such that the overall length of the cell is 12 cm. Each of the male joints fitting in these has a potassium bromide window (1 inch diameter by 5 mm thick, Barnes Engineering) attached to the inside with an epoxy resin. The cell is attached to the vacuum line through a 4 mm stopcock, and can be easily disassembled for cleaning of the KBr windows. This cell, as well as type B described below, can be evacuated to 10⁻⁶ mm.

IR Cell Type B

A special IR cell was constructed for the study of gas-solid chemisorption reactions at various temperatures (20-200°C). The cell, pictured in Figure 2, consists of a glass tube (40 mm O.D.) with a ground glass female joint fused to each end (overall length 12 cm). Each of the male joints

IR SPECTRUM OF CHEMISORBED COMPOUNDS

fitting in these had a KBr window, attached to the outside with epoxy resin. On the inner end of one of these male joints is fixed a teflon holder for a 25 mm IR-TRAN window. The holder consists of two pieces of teflon annular rings to keep the window in position. A 4 mm stopcock with a female ground glass joint is fitted at the center of the cell for connection to the vacuum line. Another female joint is fused at a 120° angle from this stopcock for the introduction of a thermistor probe. A thin walled glass tube closed at the inner end and fused to the joint allows the probe to come into the cell without affecting the vacuum. The stainless steel thermistor probe is connected to an Atkins multiple range resistance thermometer and the cell was heated by winding a heating tape around the central part of it.

Procedure

The experimental procedure used with these cells in studying chemisorption reactions of organic ligands and inorganic transition metal salts is as follows:

The inorganic salt is deposited on the KBr window of cell A or the IRTRAN window of cell B by dropping a solution of the salt, ground to a small particle size with chloroform, onto the window. Evaporation of chloroform in a desiccator results in the deposition of very even layers. The cell is then evacuated to 10^{-6} mm, and a spectrum of the unreacted inorganic salt taken (any deviation from a straight base line indicates the presence of contamination, water of hydration, etc.).

The cell is placed back on the vacuum line and re-evacuated to 10^{-6} mm with stopcocks B and C open. The

G. G. GUILBAULT, E. SCHEIDER, AND J. DAS

system is closed by stopcock A (Figure 3), stopcock D was opened, and the gaseous ligand is allowed to react with the inorganic salt in the cell until a definite reaction had taken place, as shown by the change in appearance of the salt (i.e. change in physical state or color). This reaction varied from a few seconds to 96⁺ hours depending on the salt. The cell is then removed from the vacuum line and a spectrum is taken using a high resolution Beckman IR-7.

The cell is then evacuated to various pressures (10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6} mm) and a spectrum is recorded each time. These spectra give information as to the type of bonding in the complex (appearance, disappearance, or shift in IR bands) and to the nature of interaction (bands disappear during evacuation in physisorption or remain strong after evacuation in chemisorption).

Both cells have also been used with the vacuum line extended to the IR sample compartment. In this way the reaction can be monitored by infrared continuously.

RESULTS AND DISCUSSION

The spectra of gaseous diisopropyl methyl phosphonate obtained with these cells, before and after interaction with FeCl_3 , are shown in Figure 4. The spectra of gaseous DIMP was similar to that of liquid DIMP⁵ except for the P-O stretching frequency which was shifted from 1247 cm^{-1} to 1266 cm^{-1} and the P-O-C vibration frequency which was shifted (Table 1) from 990 cm^{-1} (vs) and 1014 cm^{-1} (vs) to 995 (vs) and 1018 cm^{-1} (s). The P-O-C bond might be expected to give rise to two characteristic frequencies, one arising

IR SPECTRUM OF CHEMISORBED COMPOUNDS

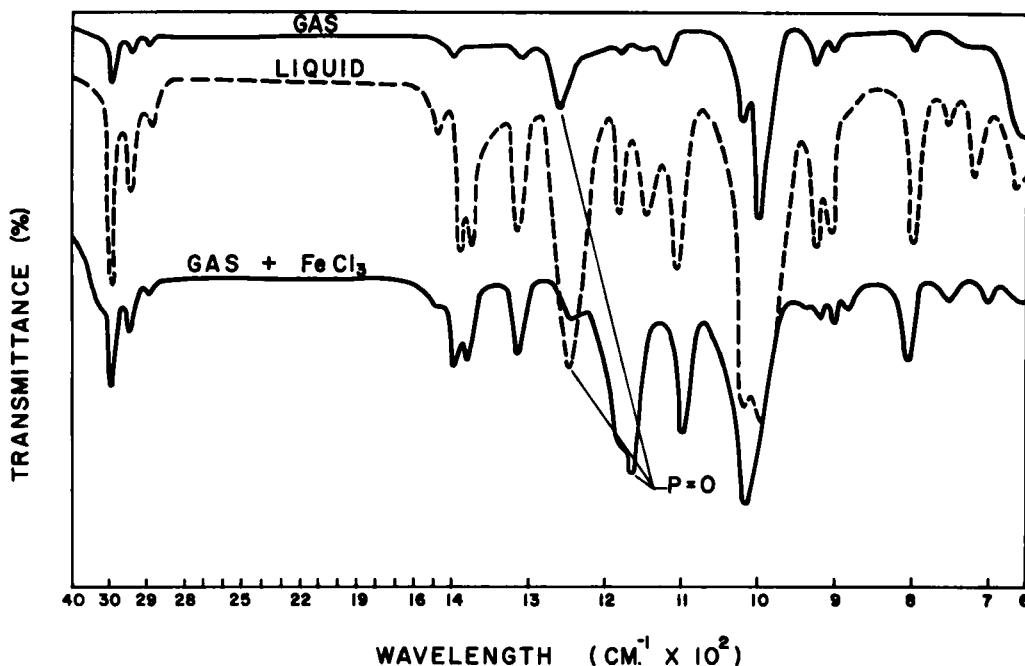


FIG. 4

Infrared Spectra of Diisopropyl Methyl Phosphonate in Gaseous and Liquid States Before and After Interaction with FeCl_3

from the P-O vibration, modified by the O-C link (1018 cm^{-1}) and the other from the O-C linkage modified by the phosphorus atom (995 cm^{-1}).

The salt, FeCl_3 , exhibited a strong interaction with DIMP, as evidenced by a frequency shift to lower wave numbers of the phosphoryl stretching frequency (1266 to 1167 cm^{-1} , $\Delta\nu = 99 \text{ cm}^{-1}$), and an effect on the P-O and O-C vibrations of the P-O-C bond (Table 1).

Similar spectra were obtained for gaseous dimethyl methyl phosphonate (DMMP) and DMMP- FeCl_3 complex, and these results are reported in Table 2. Again a strong chemisorption reaction was observed, the phosphoryl

TABLE 1

Infrared Bands and Assignments for Liquid DIMP and for
Gaseous DIMP Before and After Interaction with FeCl_3

Diisopropyl methyl phosphonate Liquid	Gas	+ FeCl_3 (10^{-6} mm)	Assignment
719 (m)	723 (vw)	700 (w)	C-P stretching
750 (w)		747 (w)	P-O stretching
792 (s)	790 (m)	807 (s)	(symmetrical)
901 (s) d	900 (w) d	900 (w) d	CH_3 wagging
917 (s) d	919 (m) d	917 (w) d	O-C of P-O-C
990 (vs) d	995 (vs) d	1012 (vs)	P-O of P-O-C
1014 (vs, sh) d	1018 (s) d		O-C stretching
1110 (s)	1115 (m)	1093 (s)	C-C-C (asym.)
1142 (m)	1142 (vw)	1143 (m, sh)	stretching
1180 (m)	1182 (m)	1182 (s, sh)	CH_3 wagging, O=C
1247 (vs)	1266 (s)	1167 (vs)	P=O stretching
1313 (s)	1315 (m)	1313 (s)	CH_3 wagging
1376 (s) d		1376 (s) d	CH_3 symmetrical
1386 (s) d	1389 (m)	1387 (s) d	deformation
1466 (w)		1452 (w) d	CH_3 bending,
2890 (w)	2880 (vw)	2875 (vw)	CH_3 (asym.) deformation
2945 (m)	2940 (w)	2937 (m)	CH stretching
2985 (s)	2985 (s)	2985 (s)	CH_3 stretching (sym. and asym.)

(s) = strong; (m) medium; (w) = weak; (vs) = very strong;
(vw) = very weak; (sh) = shoulder; (d) = doublet.

stretching frequency shifting from 1276 to 1173 cm^{-1} , $\Delta\nu = 103 \text{ cm}^{-1}$, and the P-O and O-C bands of the P-O-C bond shifting from 1051 and 1076 cm^{-1} to 1021 and 1052 cm^{-1} , respectively. All peaks observed for the gas-solid complexes were as strong after evacuation to 10^{-6} mm as in the original spectra, indicating strong chemisorption reactions in each case.

Further work is now in progress to develop vacuum cells in which chemisorption gas-solid reactions can be

IR SPECTRUM OF CHEMISORBED COMPOUNDS

TABLE 2

Infrared Bands and Assignments for Liquid DMMP and for Gaseous DMMP Before and After Interaction with FeCl_3

Dimethyl methyl phosphonate		+ FeCl_3	
Liquid	Gas	(10^{-5} mm)	Assignment
714 (s)	716 (vw)		C-P stretching
788 (s) } d	792 (w) } d	795 (w)	P-O stretching (sym.)
820 (vs) }	820 (m) }	828 (m)	CH rocking
915 (vs)	920 (m)	915 (m)	CH_3 wagging
1035 (vs) } d	1051 (vs) } d	1021 (m) } d	P-O of P-O-C
1060 (vs) } d	1076 (s, sh) }	1052 (s) }	O-C of P-O-C
1186 (m)	1185 (w)		P-O- CH_3
1246 (vs)	1276 (s)	1173 (s)	P=O stretching
1315 (s)	1315 (m)	1314 (m)	CH_3 wagging
1422 (w)			CH_3 bending
1465 (m)			CH_3 (asym.)
1512 (vw)			deformation
2865 (m)	2850 (w)	2856 (vw)	CH_3 stretching
2935 (w, sh)	2960 (m)	2961 (vw)	(sym. and asym.)
2960 (s)			CH stretching
3000 (m, sh)			

(s) = strong; (m) medium; (w) weak; (vs) = very strong; (vw) = very weak; (sh) shoulder; d = doublet.

studied in the far-IR, UV and visible regions of the electromagnetic spectrum.

ACKNOWLEDGMENT

The financial support of the Army Research Office (Grant No. Da-ARO-D-31-124-G906) is gratefully acknowledged.

REFERENCES

1. G. G. Guilbault, *Anal. Chem. Acta* 39, 260 (1967).
2. V. N. Smiley, *Rev. Sci. Instr.* 34, 820 (1963).
3. R. P. Eischens, S. A. Francis and W. A. Pliskin, *J. Phys. Chem.* 60, 194 (1956).
4. R. P. Eischens, *Science* 146, 486 (1964).
5. J. Maarsen, *Recueil* 76, 713 (1957).